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Exo 1 — Vibration d’une corde verticale pendante

La corde de longueur L est verticale, I’extrémité haute B est fixe,

Pextrémité A est libre .
B 1. La corde est en équilibre.
P X o .
4 Montrer que la tension de la corde au
i 1 . point M est donnée par :
L ] T(e)-pe(z~2)
! M 2. La corde vibre. Dans
I’approximation des petits mouvements
‘ transversaux, montrer que la fonction
“ v A d’onde x(z,t) vérifie ’équation :
9%x
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3. Quelle est la nouvelle équation d’onde si 1’on tient compte de la force
df de frottement visqueux agissant sur I’élément de corde dz :
df= —u%x—dz ou o est une constante.
t
4. On suppose que la corde est trés longue et on cherche une solution a
P’équation d’onde au voisinage du point de fixation (z << L). Montrer qu’une
onde sinusoidale de pulsation @, d’amplitude complexe x(z,7) = aelork) oy
 est une constante réelle, peut se propager si la constante de frottement ¢ a une

certaine valeur o, que I’on exprimera en fonction de p, get L.
5. Pour & = oy, donner les expressions de la vitesse de phase v, et de la

vitesse de groupe v, . Commenter.
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Exo

.

2 — Chaine infinie d’oscillateurs

—> Donné en classe

Exo 3 — Ligne électrique avec pertes

Un élément dx de ligne électrique bifilaire est modélisé par une résistance
Rdx en série avec une inductance Ldx et en paralléle avec une capacité Cdx et

une conductance Gdx.
I(x) I(x+dx)
Rdx Ldx
V(x) V(x+dx)
Cdx Gdx
<+ ™ >

1. Montrer que le courant /(x,¢) suit I’équation différentielle dite équation
des télégraphistes :
1214 re+16) +ror= 21
o’ ot ox?
2. On pose I(x,t)= J(x,#)e™". Montrer que pour une valeur particuliére
po de p que I’on déterminera, 1’équation suivie par J(x,?) prend la forme :
O 2, 207
o’ ox?

Exprimer la constante 1.

3. Quelle est la condition sur les composants linéiques de la ligne R, L, C
et G pour laquelle une onde se propage sur la ligne sans déformation.
Quelle est dans ce cas la forme de la solution générale de I’équation des
télégraphistes ?

Le probléme de la propagation s’est posé concrétement en 1854 4 William
Thomson (qui deviendra Lord Kelvin & cette occasion). Que réalisa-t-on cette
année-1a dans I’océan atlantique ?
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Exo 4 — Dissipation dans une résistance : approche avec Poynting
On considére un fil cylindrique de rayon R, de longueur L et conductivité y, parcouru par un courant continu L.

a - Trouver le champ E dans tous le fil, puis le champ B

b - Calculer le vecteur de Poynting dans tous le fil.

¢ - En déduire la puissance entrant dans le fil. Retrouver I’expression de la résistance électrique.

.
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Exo ## — Poynting solénoide infini

On considére un solénoide infini de rayon R et soit H une hauteur d’étude. Le fil est enroulé a raison de n spires par unité de longueur
parcourues par un courant /() = Iycos(wt) avec @ = 50 Hz c-a-d des « variations lentes » du courant.

a - Justifier que 1’on puisse se placer dans le cadre de I’ARQS pour un solénoide usuel.
b - Trouver le champ ?(t) uniforme dans le solénoide en justifiant que 1’on puisse appliquer le théoréme d’Ampére et comment.
¢ - Trouver le champ f(t, M) dans le solénoide a I’aide de Maxwell-Faraday.
d - En déduire le vecteur de Poynting ﬁ(t, M) ainsi que la densité d’énergie électromagnétique w(M ).
e - Soit un volume de contrdle sous forme d’un cylindre de rayon r. A partir de 1’équation locale de 1’énergie,
proposer une écriture de la conservation de 1’énergie sur ce cylindre :
- Calculer I’énergie interne E(r) et sa dérivée temporelle
- Calcul ensuite le flux sortant du vecteur de Poynting
f - Quel est le probléme, et comment lever cette difficulté ?

h - Question plus difficile :
En revenant a I’équation de Maxwell-Ampére la plus générale, montrer que le champ B (M) ne saurait étre uniforme dés lors
qu’il existe un champ E (f, M) variable dans le temps.

0B -
On cherchera a établir a—z(t, r) puis on tracera le profil du champ B,(t, r)
. .
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