Transport de charges

Les charges et le courant

Révision SUP:

- Interaction électrostatique
- Définition du courant EC
- ARQS
- Notion de flux

Objectifs:

- Densité de charge et intensité du courant
- Vecteur densité de courant électrique
- Conservation de la charge & LDN
- Loi d'Ohm
- Résistance électrique et effet Joule

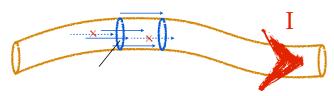
I - Les charges et le courant

1 - Densité de charge

L'ensemble des charges (électrons etc...) est une collection de points M_i et de charge q_i que l'on peut décrire par une représentation continue au moyen d'une fonction scalaire $\rho(M)$ ou **densité volumique de charge** telle que la charge dans un élément de volume $d\tau$ vaut : $dq = \rho(M)d\tau$

 q_p : la charge considérée

RO: Selon le PB on peut ne considérer que les porteurs mobiles ou porteurs fixes

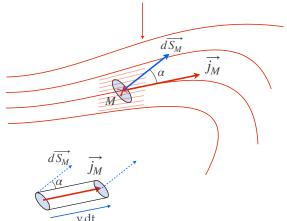

2 - Le courant :

Soit un conducteur filiforme de section S, Is quantifie la quantité algébrique de charge qui traverse S par unité de temps. Il s'exprime en Ampère. A priori Is est une fonction du temps et de la position sur le fil :

Révision SUP: Calcul du courant comme un débit de charges.

Montrer que $I = S v_p n_p q_p$

- n_p nb de porteurs/unité vol.
- V_p vitesse des porteurs
- q_p charge d'un porteur
- S section du fil



3 - Vecteur densité de courant

Plus généralement le courant est présent en tout point M du matériau conducteur, et peut être caractérisé par une charge dq passant à travers un élément de surface $d\overrightarrow{S}_M$: $dq_M = q_p n_p d\overrightarrow{S}_M \cdot \overrightarrow{v}_M \ dt = I_M dt$ (cf - Diffusion de particules)

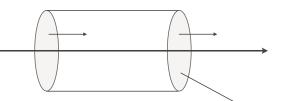
<u>Définition</u>: Afin de calculer le courant on introduit le **vecteur densité de courant** $\overrightarrow{j_M}$ qui indique au point M, la direction le sens et l'intensité du l'écoulement des charges. Soit : $\overrightarrow{j_M} = q_p n_p \overrightarrow{v}(M)$ avec $\overrightarrow{v}(M) = \overrightarrow{v}_p$ à l'échelle mésoscopique : mouvement coordonné des charges.

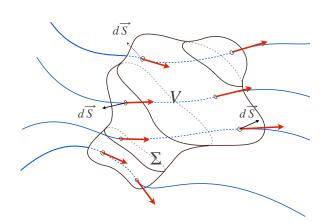
A l'échelle mésoscopique, le mouvement des charges est coordonné. On peut raisonner en terme de **ligne de courant**.

4 - Intensité du courant

Le **Courant** est donc interprété comme le : flux du vecteur densité de courant à travers une surface.

 $\mathbf{R}\mathbf{q}$: en régime permanent I_{Γ} ne dépend que de Γ et non de Σ

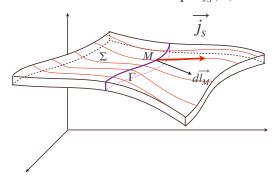

II - Conservation de la charge

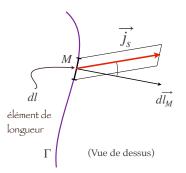

1 - Bilan unidirectionnel de conservation de la charge

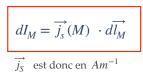
Nous allons calculer l'augmentation de charge dq au sein du volume élémentaire de 2 façons :

- Augmentation intrinsèque de la densité de charge $\rho(t,x)$ au cours du temps.
- Augmentation de la charge par le courant <u>entrant</u> à travers ses frontières.

L'identification de ces 2 expressions est la traduction même de la conservation de la charge.



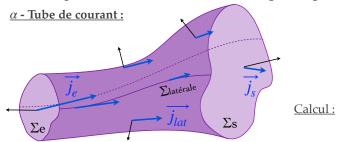

Interprétation :


 $Div(\vec{j})$ est le flux sortant par unité de volume

Cf - fiche opérateurs vectoriels

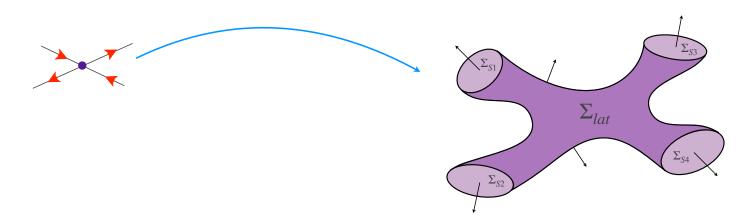
3' - HP - Densité de courant surfacique $\overrightarrow{j_S}(M)$: dans bien des cas il est pratique d'envisager une distribution surfacique plutôt que volumique

Le courant est donc interprété comme le : « flux » du vecteur densité de courant à travers une ligne.

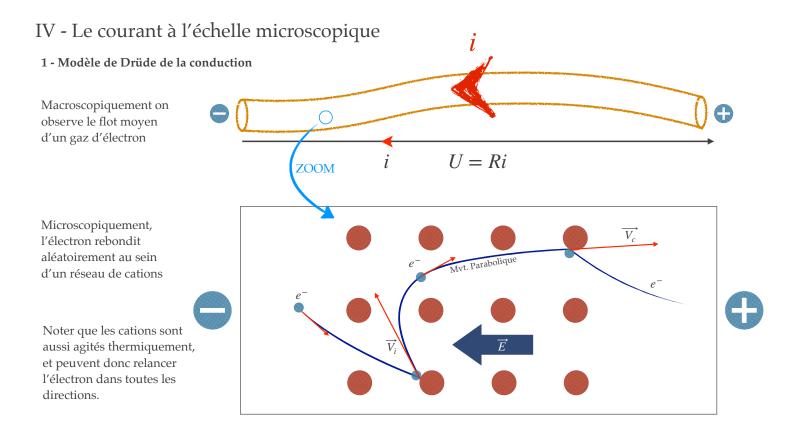

 \mathbf{NB} : le vecteur $\overrightarrow{dl_M}$ a pour norme dl mais il est dirigé selon la normale à Γ dans le plan tangent à la surface Σ au point M.

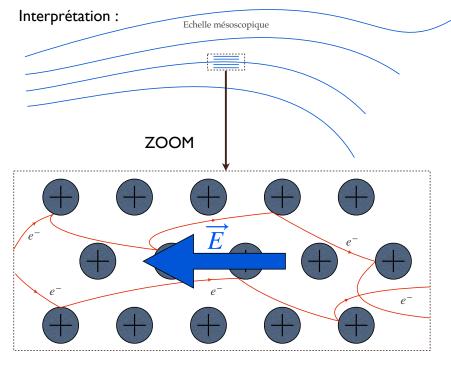
- Soit e l'épaisseur de la plaque —> relier \overrightarrow{j} et $\overrightarrow{j_S}$ Exo:

- Soit S la section d'un fil —> relier \vec{j} et I


III - Etude du courant en régime stationnaire

1 - Conséquences de la conservation de la charge en régime stationnaire




β - Loi des noeuds :

Dans l'ARQS il n'y a pas d'accumulation de charge dq=0 au cours du temps soit localement $\frac{\partial \rho}{\partial t}=0$

Ecriture locale de la L.D.N:

Echelle microscopique

La vitesse initiale de l' e^- après un choc est le résultat aléatoire produit par :

- Ses point et angle d'impact sur le réseau cationique. (marche aléatoire)
- Le mouvement aléatoire du cation lui-même qui s'agite autour de sa position moyenne.
 (—> agitation thermique)

Après un choc le modèle de Drüde consiste à penser que, raisonnablement, la vitesse initiale de l' e^- est nulle en moyenne :

A l'échelle mésoscopique ces successions d' accélération/arrêt se traduit par une ⇒ vitesse constante du flot de porteurs de charges mobiles