Méca 1

Cinématique du point

Objectifs:

- Comprendre la nécessité d'un référentiel.
- Pouvoir décrire le mouvement dans différents systèmes de coordonnées.
- Exprimer vitesse et accélération dans ces systèmes.

Pré-requis: - calcul différentiel

- Notion de vecteur

Méca 1

PLAN

- 1 Les référentiels
- 2 Les systèmes de coordonnées
 - a Coordonnées cartésiennes
 - β Coordonnées polaires
 - y Coordonnées cylindriques
 - δ Coordonnées sphériques
- 3 Vitesses et accélérations
 - a Coordonnées cartésiennes
 - β Coordonnées cylindriques
 - y Déplacements élémentaires

la Les référentiels

Mesure du temps -> horloge

Historiquement, on s'appuie sur les cycles célestes : 1 jour (soleil), 1 mois (lune), 1 année (saison)

Clepsydre, pendule, horloge

Aujourd'hui : horloge atomique

◆ Mesure de l'espace -> règle

Historiquement, on a introduit différents étalons de mesure (coudée, pied, mètre... cf unité en physique)

Le temps est absolu:

Le temps s'écoule de la même façon en tout point (temps homogène) et pour tous les observateurs quels que soient leurs mouvements respectifs.

L'espace est absolu :

La mesure des longueurs se fait de la même façon en tout point (espace homogène) et pour tous les observateurs quels que soient leurs mouvements respectifs

Le mouvement est relatif :

Nous verrons que la vitesse, l'accélération d'un mobile ainsi que la forme de sa trajectoire, dépendent du point de vue de l'observateur c-à-d du mouvement relatif de l'observateur par rapport au mobile.

Définition du référentiel

Un référentiel est une notion abstraite qui traduit le fait d'adopter <u>le point de vue d'un observateur</u> fixe par rapport à un <u>solide de référence</u>.

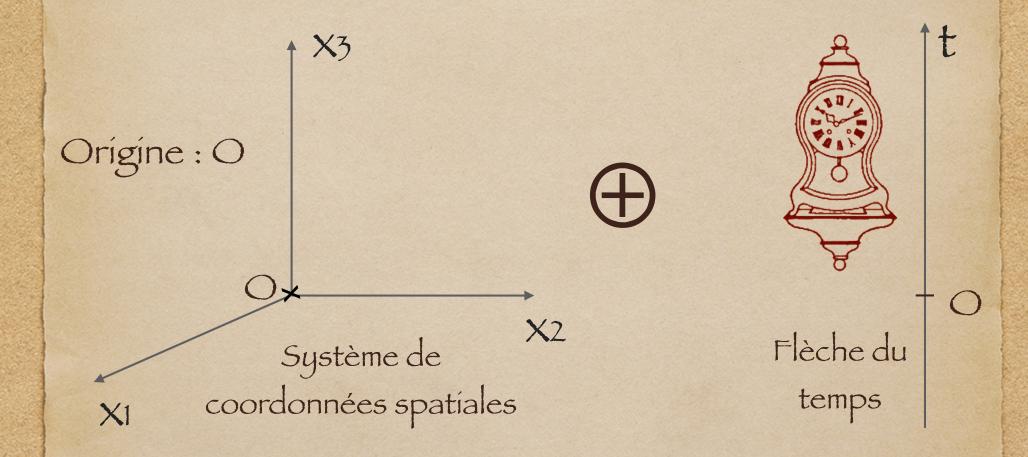
Attention : un référentiel n'est pas un repère ou un système d'axe

Exemples de référentiels:

- Référentiel terrestre lié au solide Terre
- Référentiel du passager (voiture, train)
- Référentiel géocentrique lié au centre de la terre et fixe par rapport à trois étoiles fixes

Dans un référentiel, on peut quantifier la cinématique en choisissant un repère

Notion de repère:



- Le repère est fixe dans son référentiel.
- Dans chaque référentiel il existe une infinité de repères possibles

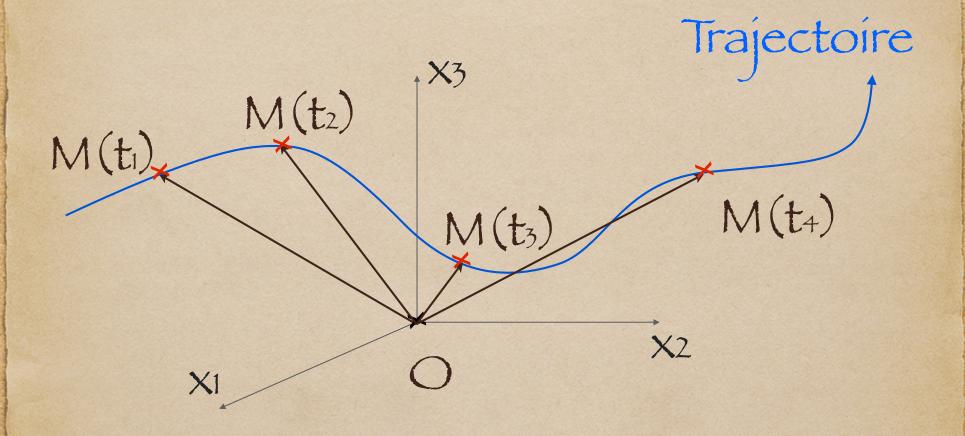
On choisit en général une base orthonormée en M, VM:

Trois vecteurs fonctions de M:
$$(e_{x_1}, e_{x_2}, e_{x_3})_M$$

- linéairement indépendants.
- Orthogonaux deux à deux.
- de norme unité.

Trièdre orthonormé

* Vecteur Position au temps t



$$\overrightarrow{OM}(t) = x_1 \overrightarrow{e_{x_1}} + x_2 \overrightarrow{e_{x_2}} + x_3 \overrightarrow{e_{x_3}}$$

Equation paramétrique:

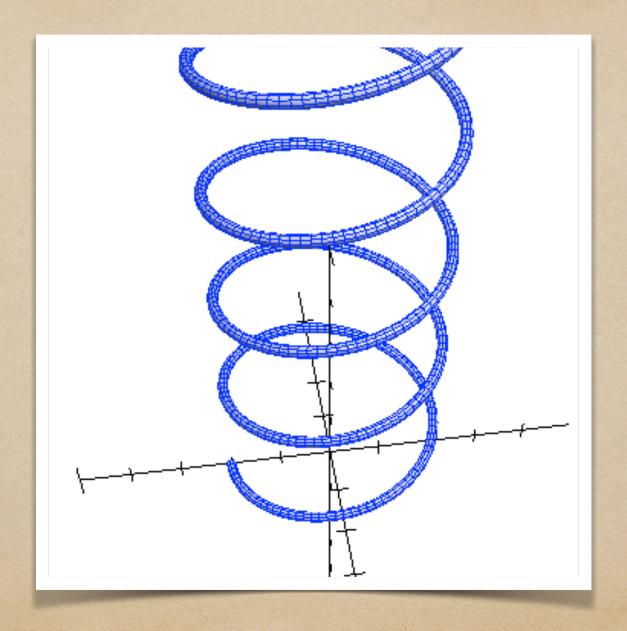
Equation horaire du mouvement

$$\begin{cases} x_1(t) \\ x_2(t) \\ x_3(t) \end{cases}$$

Elle paramétrise la trajectoire d'un point

Ex: Mvt. circulaire en cartésien (2D):

Ex: Mvt. hélicoïdal en cylindrique (3D):



© 2 - Systèmes de coordonnées

Systèmes de coordonnées spatiales :

- Coordonnées cartésiennes
- Coordonnées polaires
- Coordonnées cylindriques
- Coordonnées sphériques

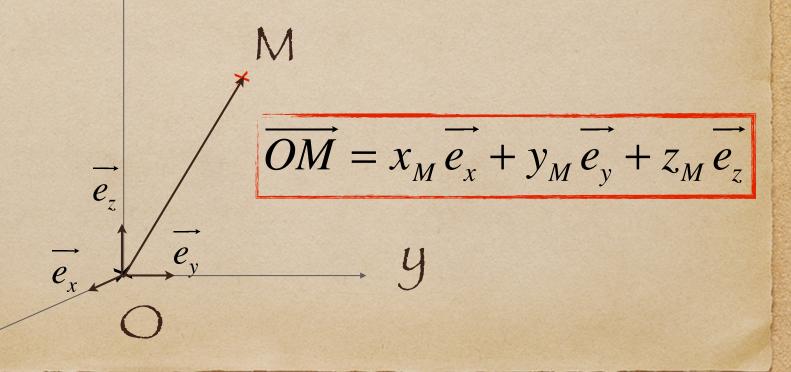
Référentiel Ro:

On se donne un solide de référence matérialisé par trois axes fixes dans Ro

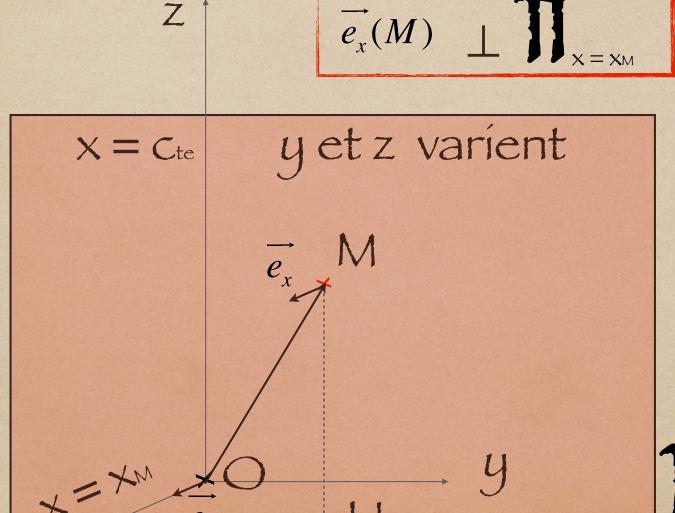
Ko O

a - Coordonnées cartésiennes

M(xm,ym,zm): avec xm, ym et zm les projections orthogonales de M sur trois axes orthogonaux



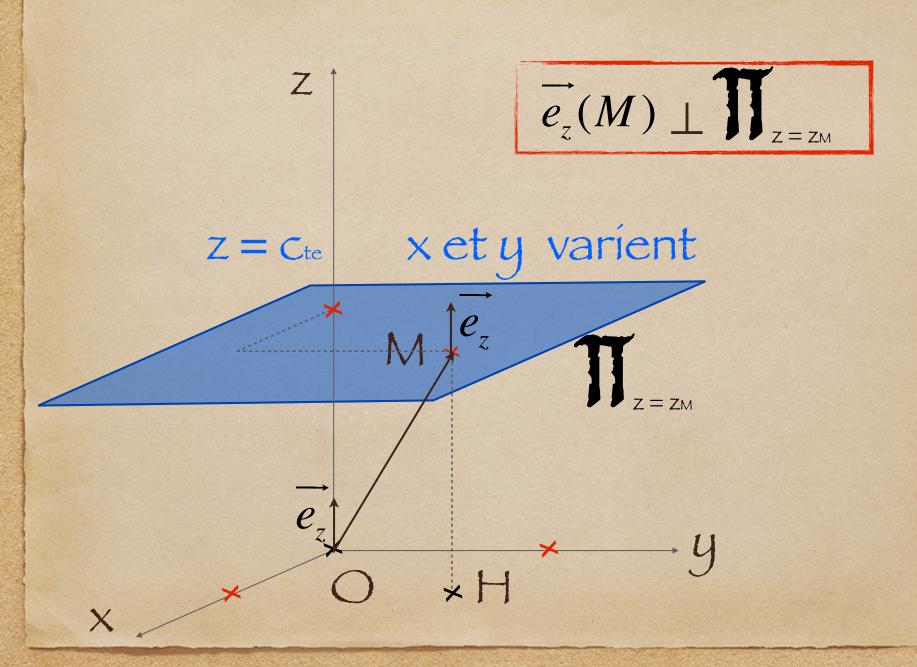
Coordonnées cartésiennes



 ${}_{\mathsf{X}=\mathsf{X}\mathsf{N}}$

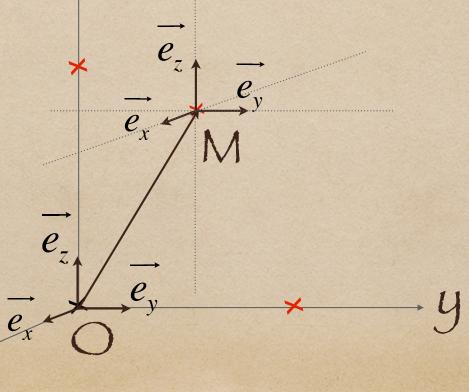
Coordonnées cartésiennes xet z varient U= Cte $\overrightarrow{e_y}(M) \perp \prod_{y=y_M}$

Coordonnées cartésiennes



Définition de la base cartésiennes :

Chaque vecteur de base indique au point M, la direction dans laquelle sa coordonnée augmente



Partant du point M:

- Si j'avance dans la direction de $\overrightarrow{e_x}$
 - => Seule x augmente, et y et z restent închangées

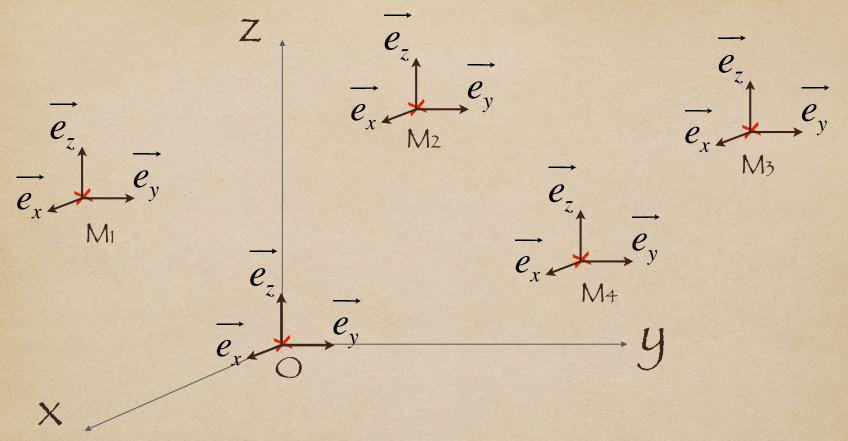
- Si j'avance dans la direction de $\overrightarrow{e_y}$
 - => Seule y augmente, x et z restant inchangées

- Si j'avance dans la direction de $\overrightarrow{e_z}$
 - => Seule z augmente, x et y restant inchangées

Chaque vecteur de base indique au point M, la direction dans laquelle sa coordonnée augmente

Cette idée simple sera valide pour tous les systèmes de coordonnées

Base locale en coordonnées cartésiennes



La base locale $(\overrightarrow{e_x}, \overrightarrow{e_y}, \overrightarrow{e_z})_M$ ne dépend pas de la position du point M considéré

Propriétés des coordonnées cartésiennes :

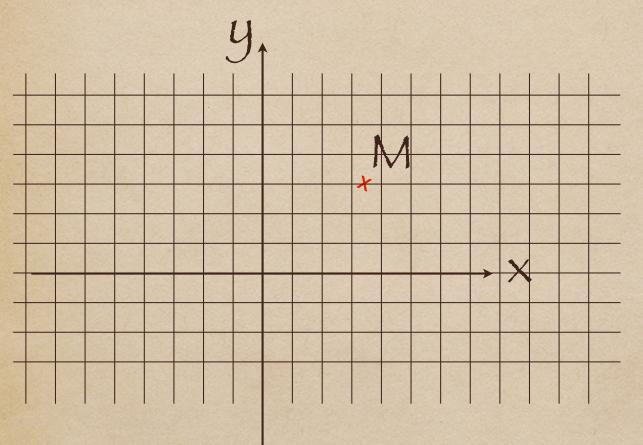
 \boldsymbol{e}_{x} , \boldsymbol{e}_{y} et \boldsymbol{e}_{z} sont des vecteurs constants

du référentiel Ro

Rq: dans bien des calculs nous nous ramènerons à la base cartésienne pour utiliser cette particularité

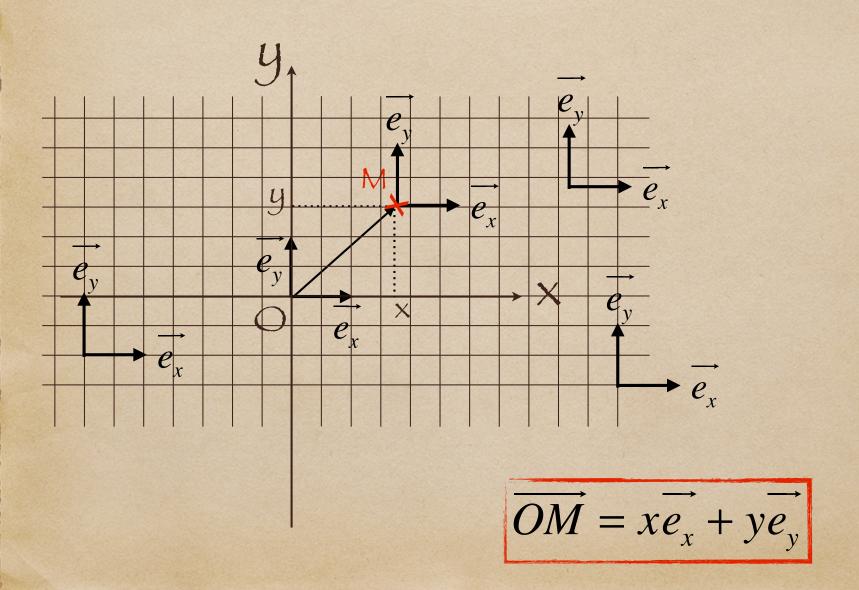
Cas particulier:

Coordonnées cartésiennes 2D



-M:(x,y)

Coordonnées cartésiennes 2D

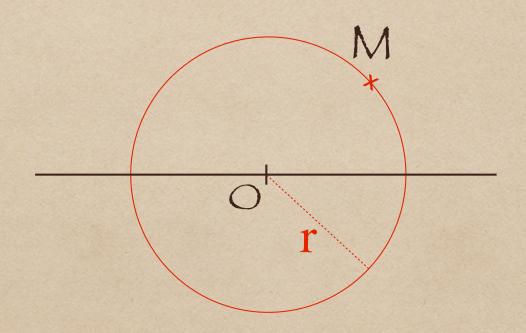


β - Coordonnées polaires (r,θ) [2D]

M +

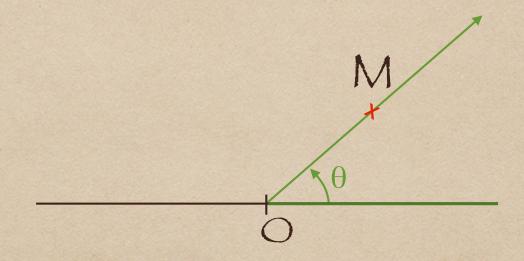
On se donne un axe de référence fixe dans Ro et une origine O

β - Coordonnées polaires (r,θ)



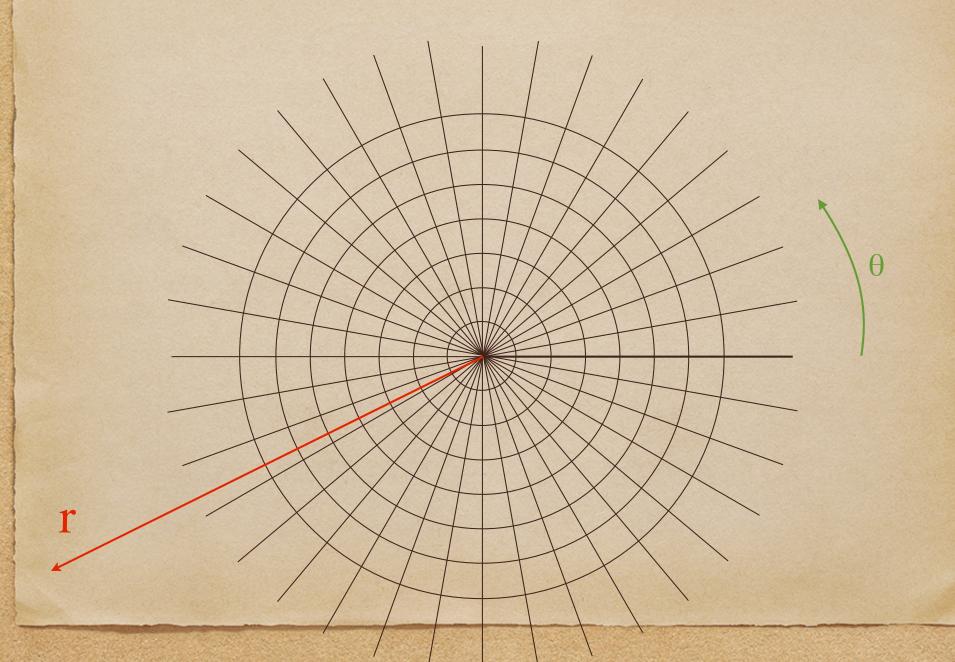
r : coordonnée radiale -> distance à l'origine

Coordonnées polaires (r,0)

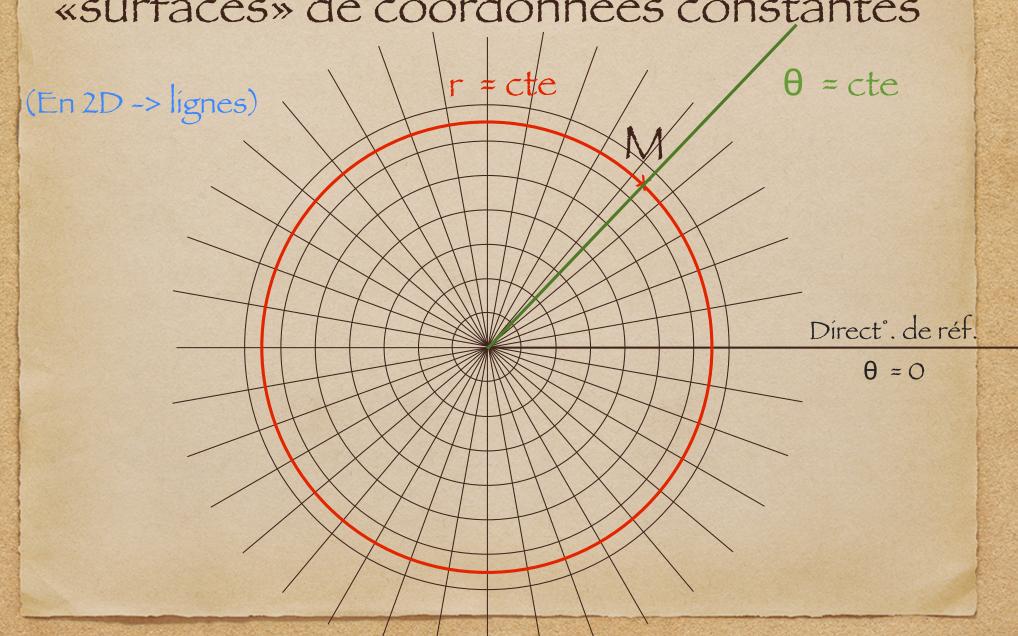


θ: coordonnée angulaire -> angle par rapport à l'axe de référence.

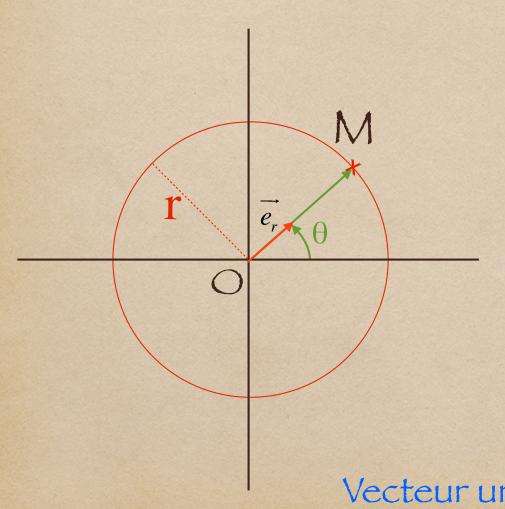
Grille de coordonnées polaire (r,0)

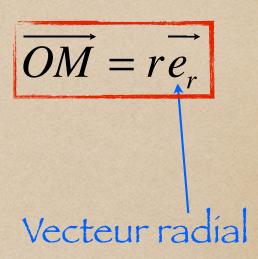


Le point M est à l'intersection de deux «surfaces» de coordonnées constantes



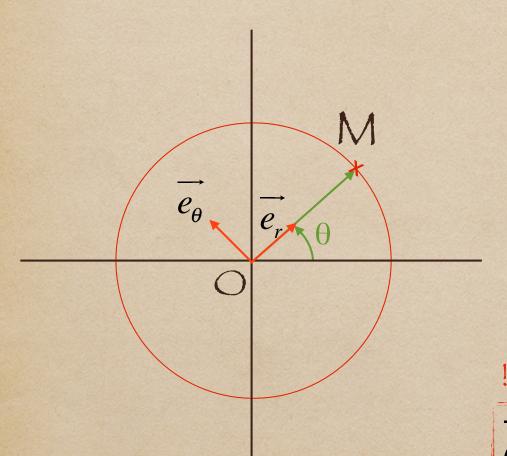
Coordonnées polaires (r,0)





Vecteur unitaire : de norme unité

Coordonnées polaires (r,0)



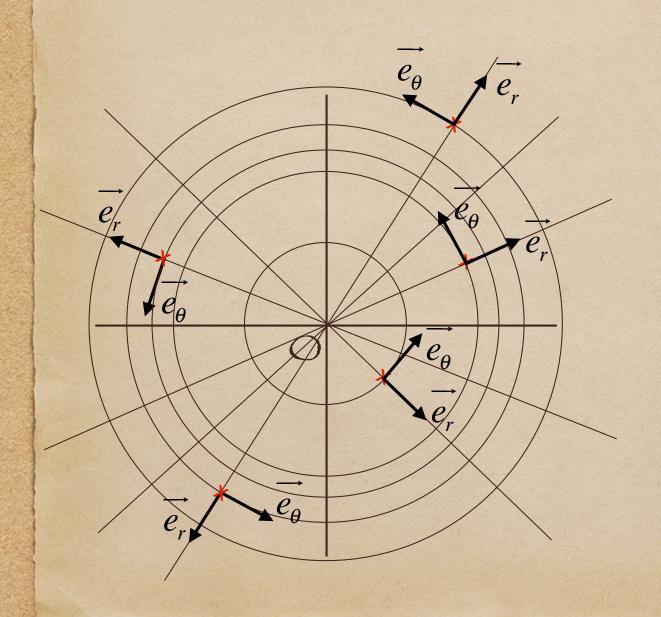
Base locale:

$$\left(\overrightarrow{e_r}(\theta), \overrightarrow{e_\theta}(\theta)\right)_M$$

Vecteur orthoradial

!!! Attention aux variables !!!

$$\overrightarrow{OM}(r,\theta) = \overrightarrow{re_r}(\theta)$$



Base locale:

$$\left(\overrightarrow{e_r}(\theta), \overrightarrow{e_\theta}(\theta)\right)_M$$

Définitions des vecteurs de la base locale

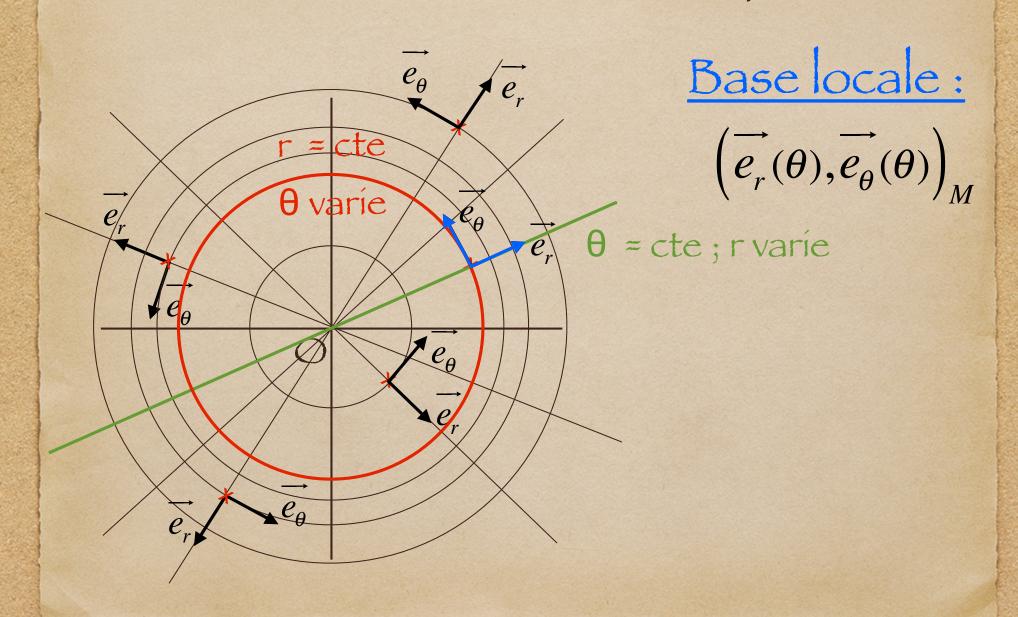
$$\overrightarrow{e_r}(\theta)$$

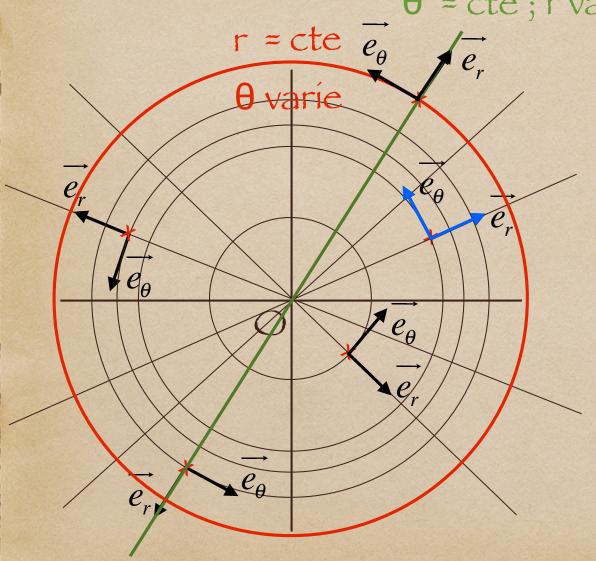
Vecteur de norme unité dirigé dans la direction où augmente la coordonnée r

$$\overrightarrow{e_{\theta}}(\theta)$$

Vecteur de norme unité dirigé dans la direction où augmente la coordonnée θ

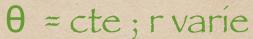
En coordonnées polaires, ces directions changent lorsque θ varie : la base est locale

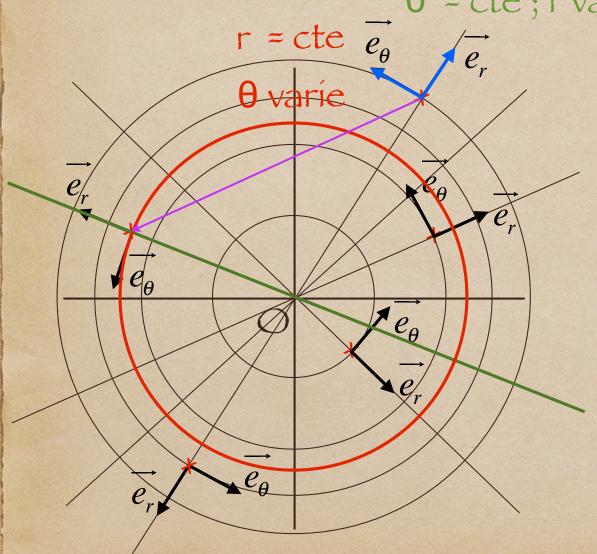




Base locale:

$$(\overrightarrow{e_r}(\theta), \overrightarrow{e_\theta}(\theta))_M$$

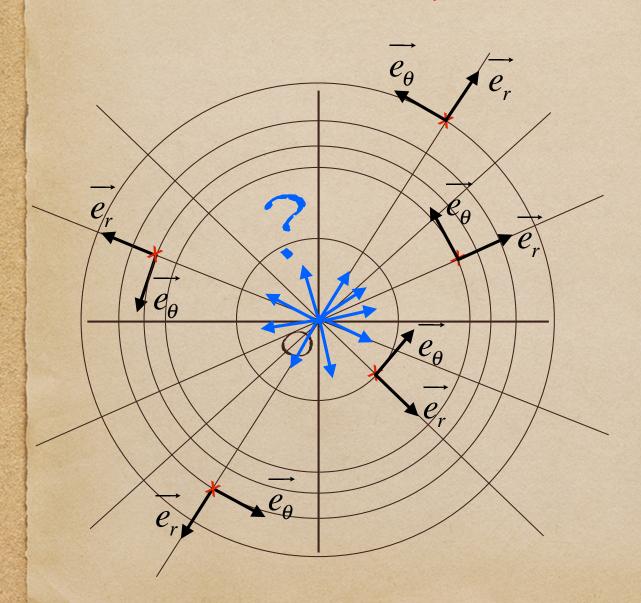




Base locale:

$$(\overrightarrow{e_r}(\theta), \overrightarrow{e_\theta}(\theta))_M$$

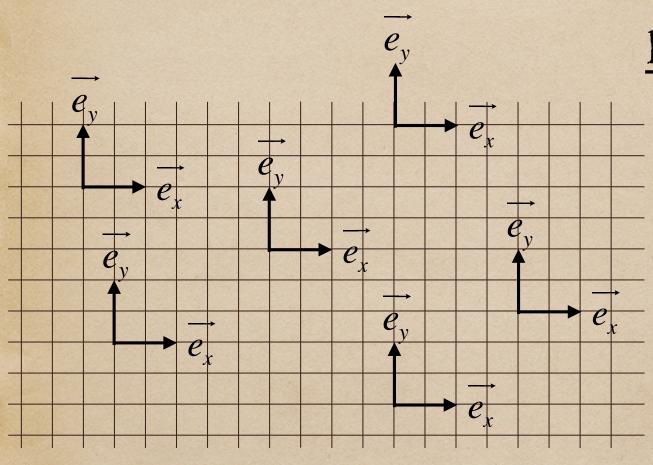
La base n'est pas définie à l'origine



Base locale:

$$\left(\overrightarrow{e_r}(\theta), \overrightarrow{e_\theta}(\theta)\right)_M$$

Base locale en coordonnées cartésiennes



Base locale:

$$\left(\overrightarrow{e_{x}},\overrightarrow{e_{y}}\right)_{M}$$

Propriétés des coordonnées cartésiennes : Ne pas noter

 e_x et e_y sont des vecteurs constants

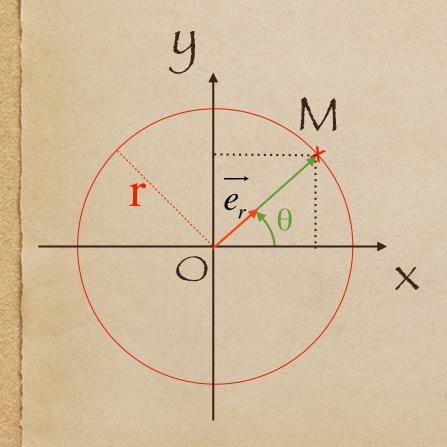
$$\Rightarrow d\vec{e_x} = 0 de_y = 0$$

La base locale $(\overrightarrow{e_x}, \overrightarrow{e_y})$ ne dépend pas de la position du point M considéré

Rq: dans bien des calculs nous nous ramènerons à la base cartésienne pour utiliser cette particularité

Passage cartésien - polaire

$$\overrightarrow{OM} = r\overrightarrow{e_r}$$



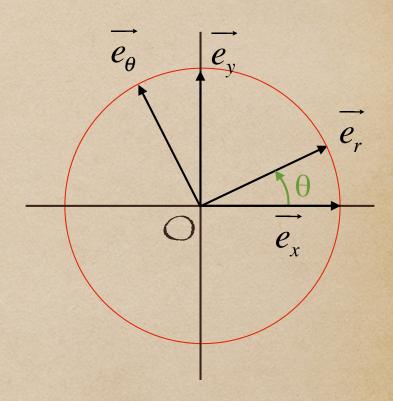
$$\begin{cases} x = r\cos(\theta) \\ y = r\sin(\theta) \end{cases}$$

$$\begin{cases} r = \sqrt{x^2 + y^2} \\ \theta = \arctan(\frac{y}{x}) \end{cases} \quad (+\pi \sin x < 0)$$

Conversion des vecteurs de base

$$\overrightarrow{e_r} =$$

$$\overrightarrow{e_{\theta}} =$$



Différentielle des vecteurs de base

$$\overrightarrow{de_r} =$$

$$\overrightarrow{de_{\theta}} =$$

$$\overrightarrow{de_r} =$$

Soit:

$$\overrightarrow{de_{\theta}} =$$

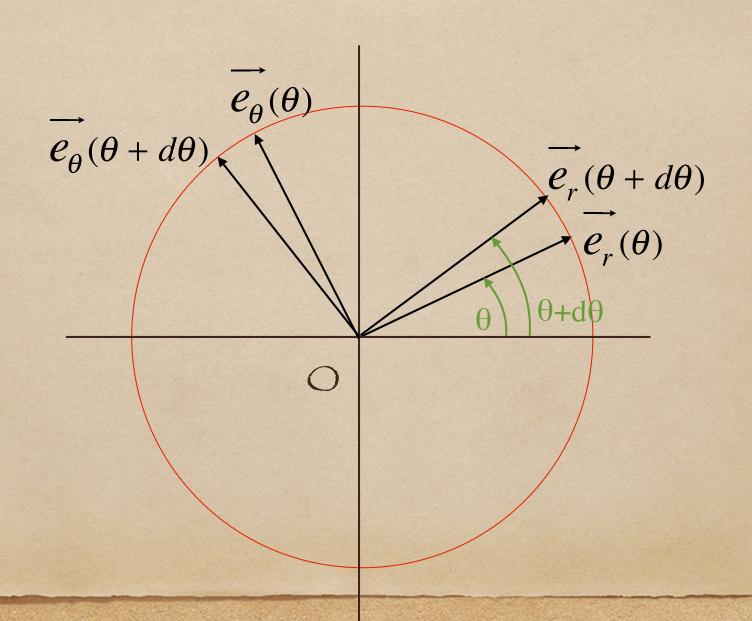
Différentielle des vecteurs de base

Propriété:

$$\overrightarrow{de_r} = d\theta \overrightarrow{e_\theta}$$

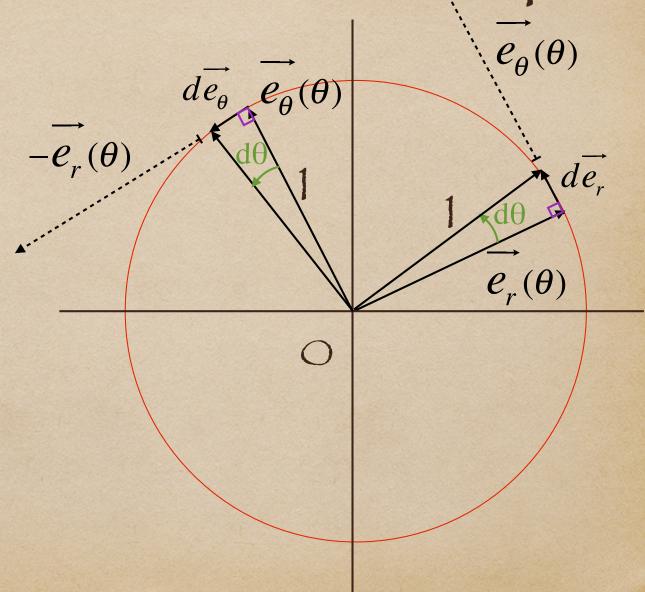
$$\overrightarrow{de_{\theta}} = -d\theta \overrightarrow{e_r}$$

Interprétation géométrique

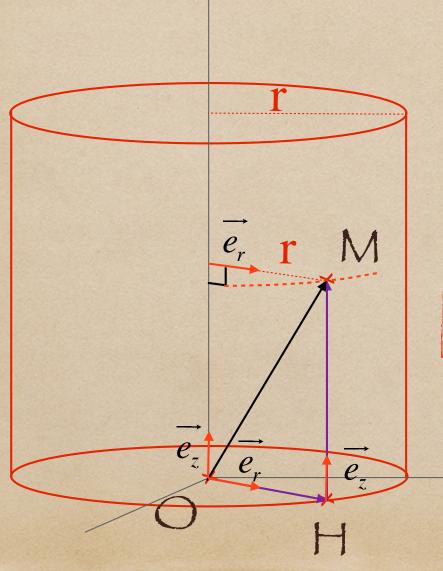


Interprétation géométrique

$$\overrightarrow{de_{\theta}} =$$



© γ - Coordonnées cylindriques



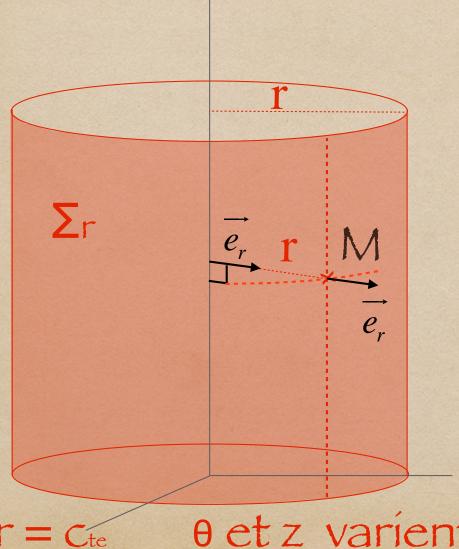
$$\overrightarrow{OM} = \overrightarrow{OH} + \overrightarrow{HM}$$

$$\overrightarrow{OM} = r\overrightarrow{e_r} + z\overrightarrow{e_z}$$

!!! Attention aux variables !!!

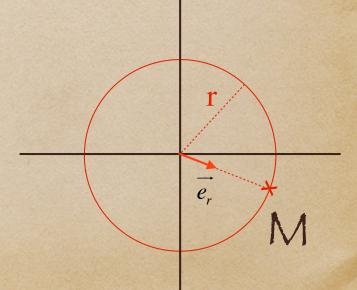
$$\overrightarrow{OM}(r,\theta,z) = r\overrightarrow{e_r}(\theta) + z\overrightarrow{e_z}$$

$M \in \left\{ \begin{array}{l} \text{Cylindre} \, \Sigma_r \\ \text{de rayon r} \end{array} \right\}$

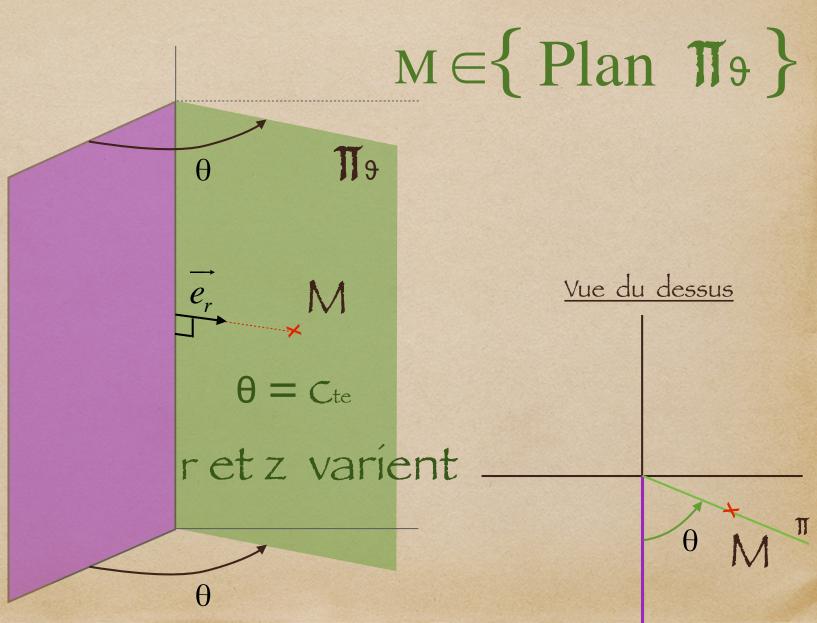


θ et z varient

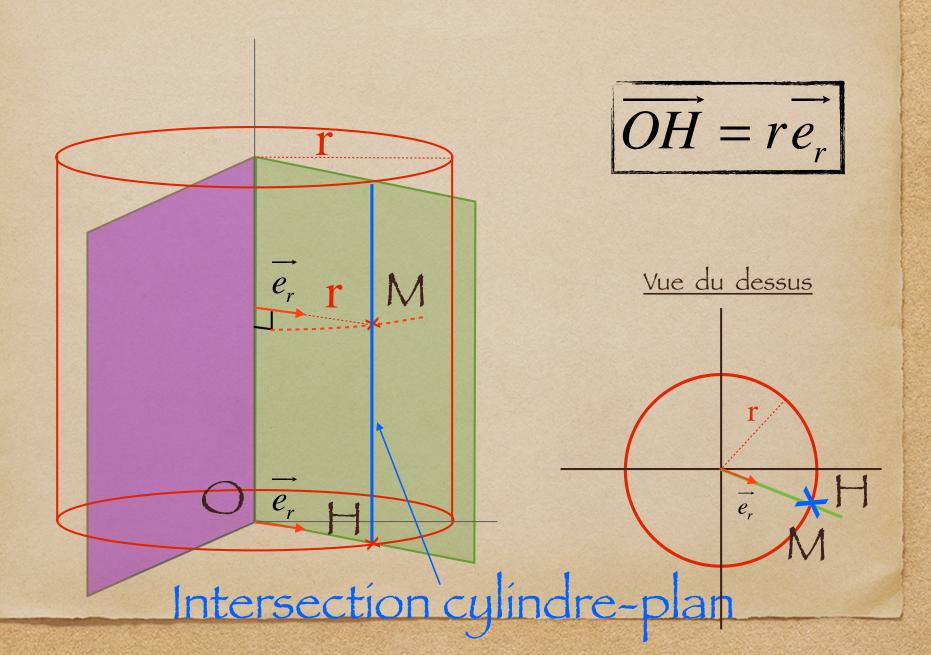
Vue du dessus



Coordonnées cylindriques

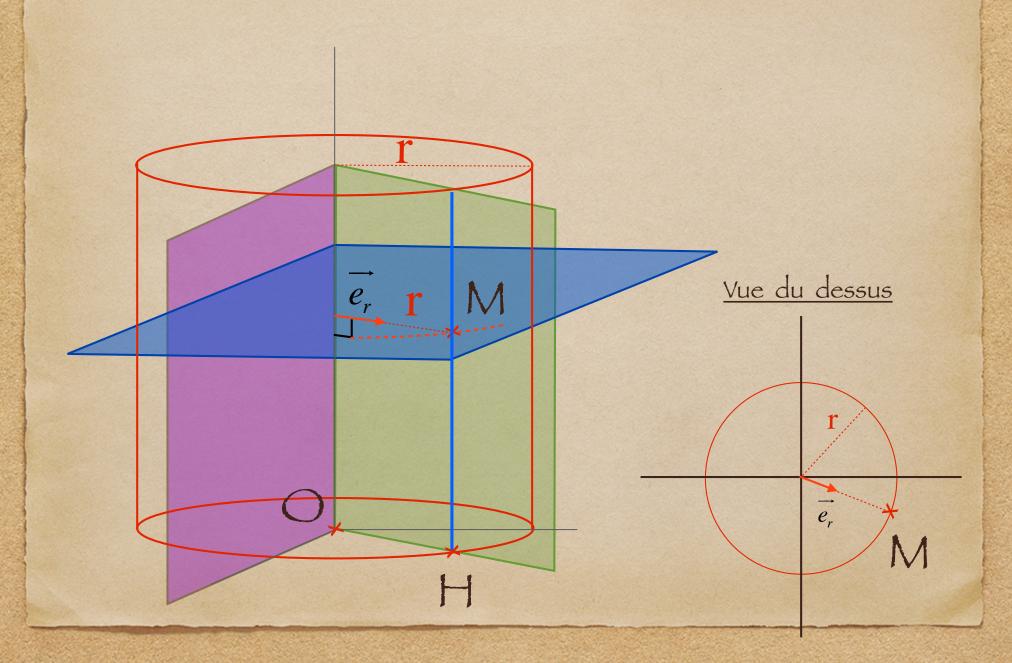


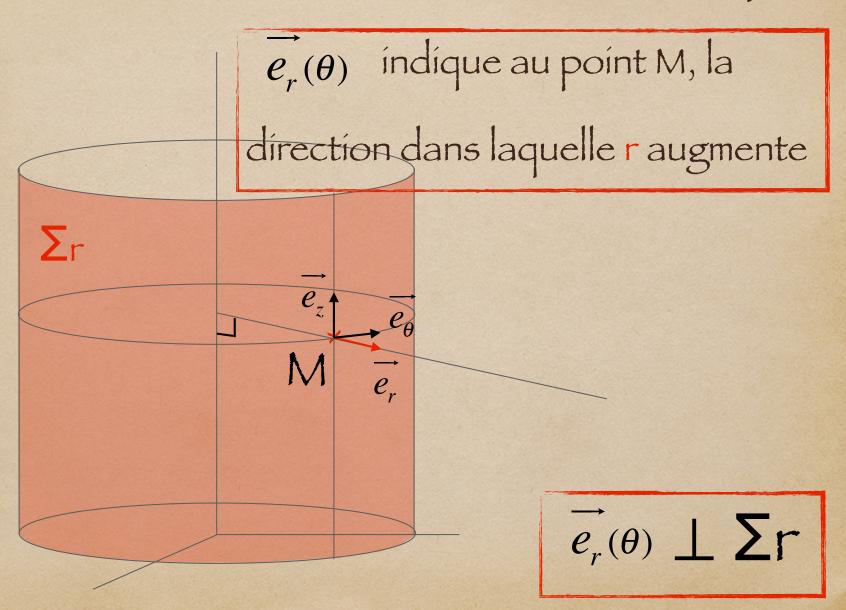
Coordonnées cylindriques

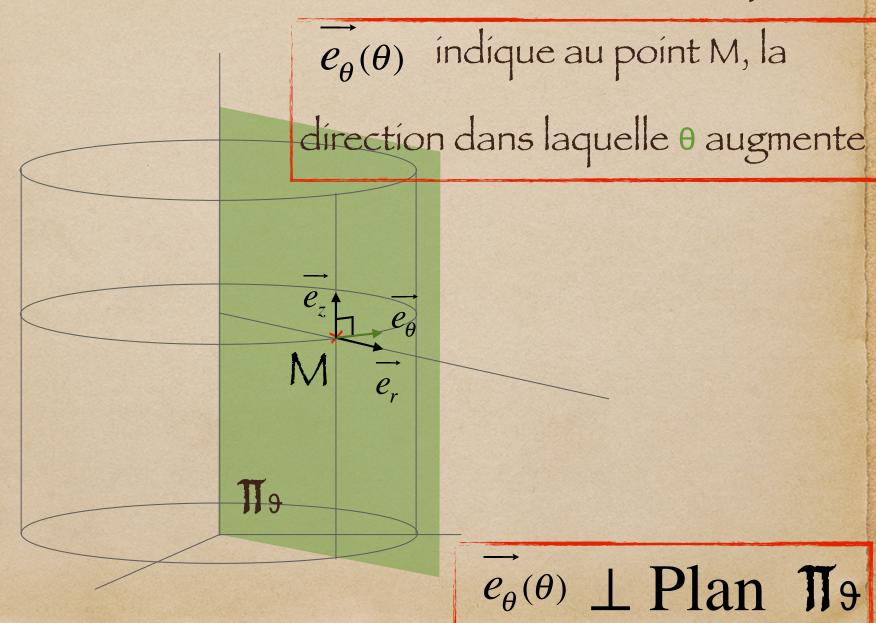


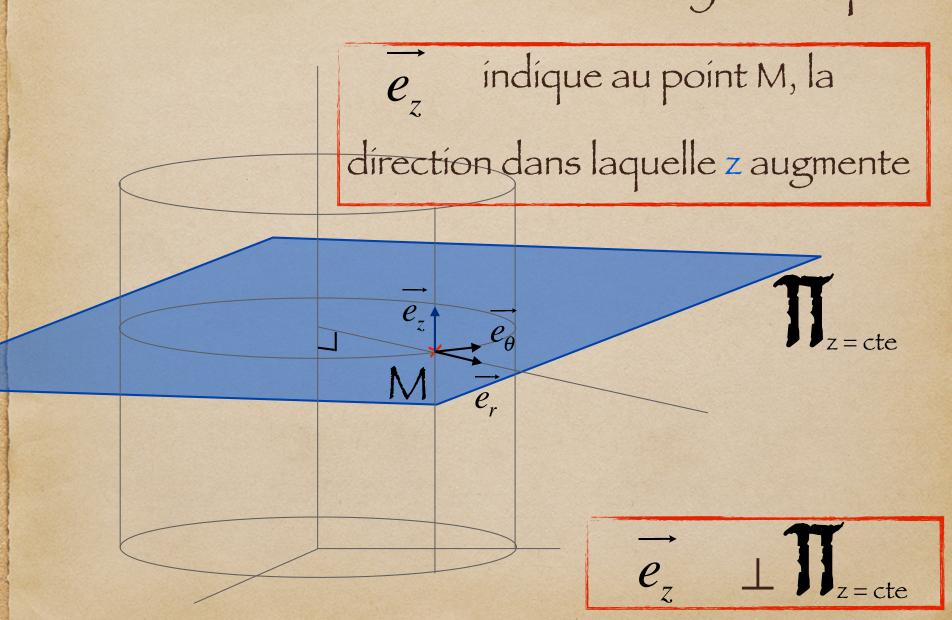
Coordonnées cylindriques $M \in \{ Plan \Pi_z \}$ $\overrightarrow{HM} = z\overrightarrow{e}_{z}$ ret o varient $Z = C_{te}$ Vue de profil

Coordonnées cylindriques









Partant du point M:

- Si j'avance dans la direction de $\overrightarrow{e_r}$
 - => Seule r augmente, et θ et z restant inchangées

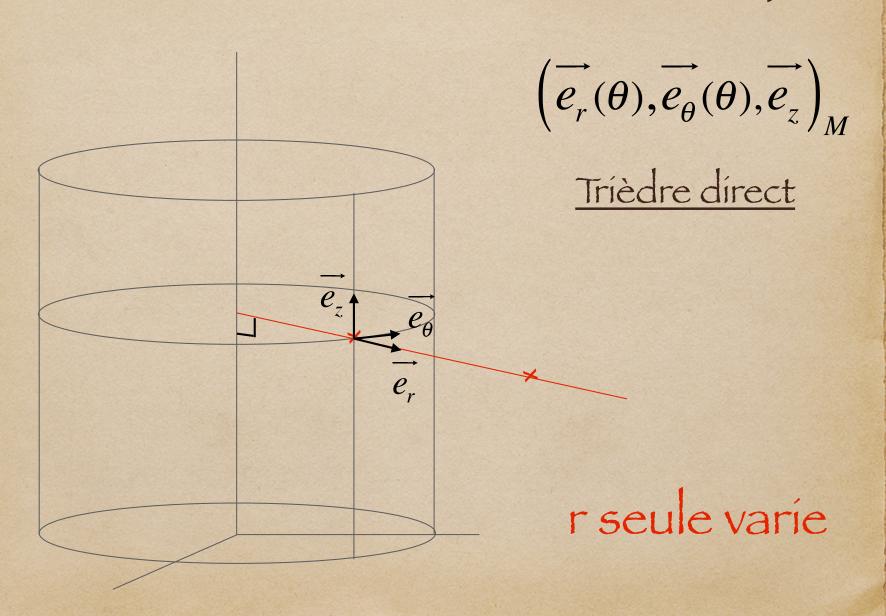
- Si j'avance dans la direction de $\stackrel{
 ightarrow}{e_{ heta}}$
 - => Seule θ augmente, r et z restant inchangées

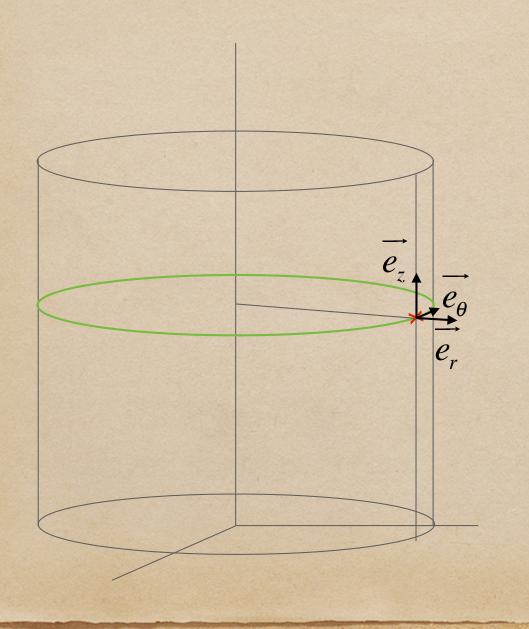
- Si j'avance dans la direction de $\overrightarrow{e_z}$
 - => Seule z augmente, r et θ restant inchangées

Propriété du vecteur e

 e_7 est un vecteur constant

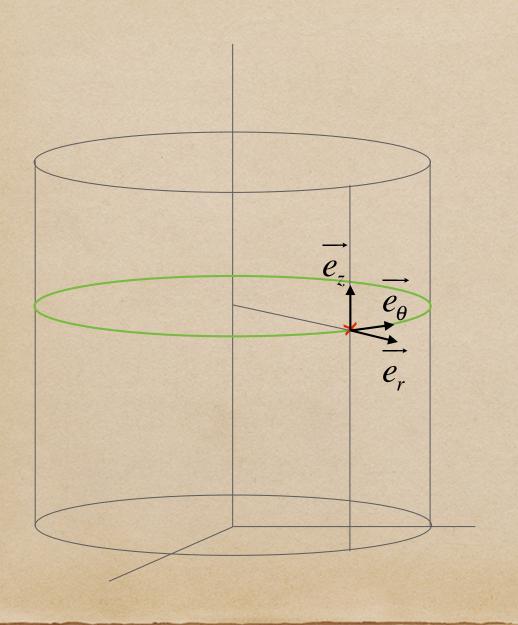
$$\overrightarrow{de_z} = \overrightarrow{0}$$





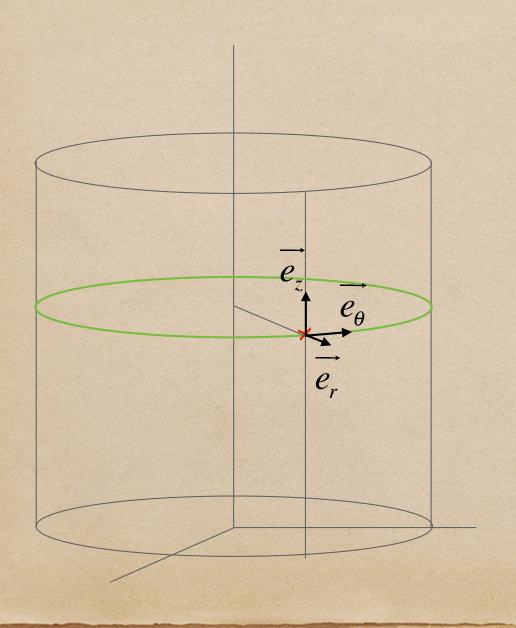
$$\left(\overrightarrow{e_r}(\theta), \overrightarrow{e_\theta}(\theta), \overrightarrow{e_z}\right)_M$$

Trièdre direct



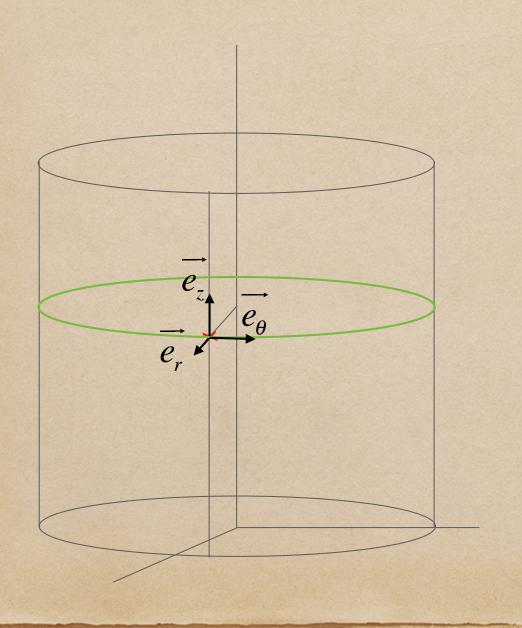
$$\left(\overrightarrow{e_r}(\theta), \overrightarrow{e_\theta}(\theta), \overrightarrow{e_z}\right)_M$$

Trièdre direct



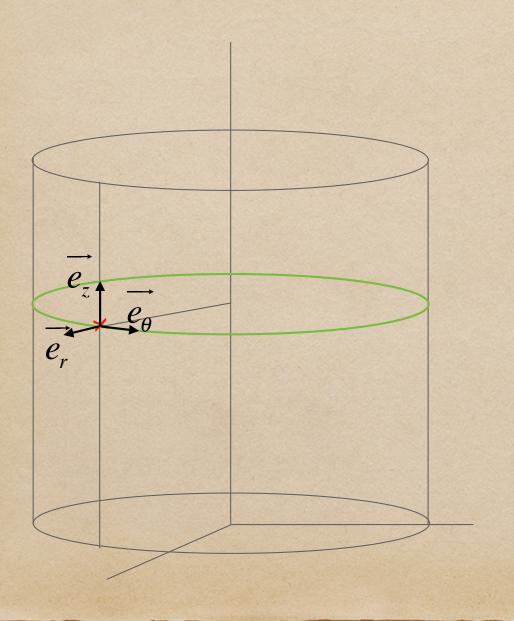
 $\left(\overrightarrow{e_r}(\theta), \overrightarrow{e_\theta}(\theta), \overrightarrow{e_z}\right)_M$

Trièdre direct



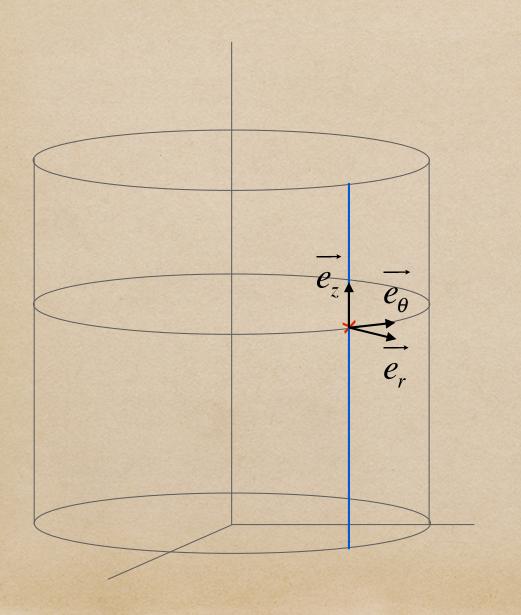
$$\left(\overrightarrow{e_r}(\theta), \overrightarrow{e_\theta}(\theta), \overrightarrow{e_z}\right)_M$$

Trièdre direct



$$\left(\overrightarrow{e_r}(\theta), \overrightarrow{e_\theta}(\theta), \overrightarrow{e_z}\right)_M$$

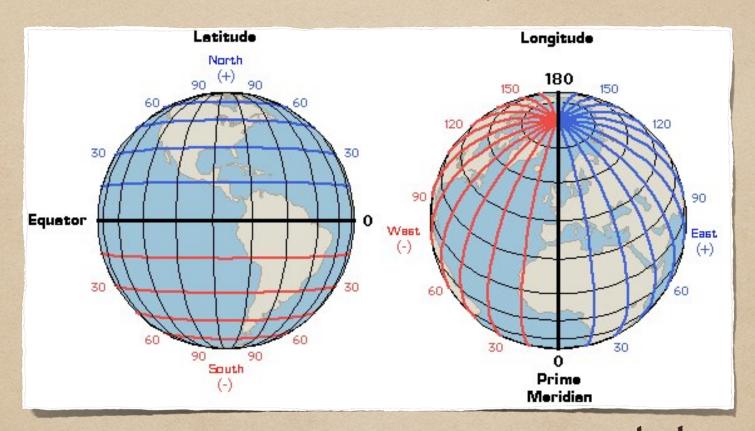
Trièdre direct



$$\left(\overrightarrow{e_r}(\theta), \overrightarrow{e_\theta}(\theta), \overrightarrow{e_z}\right)_M$$

Trièdre direct

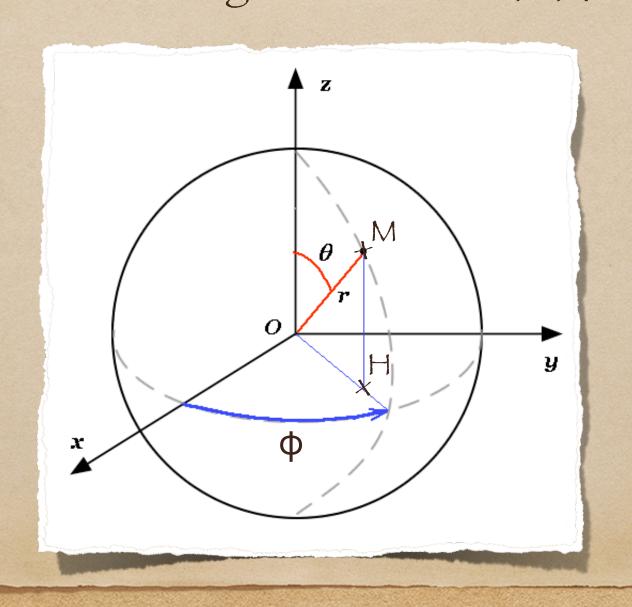
© δ - Coordonnées sphériques



Comment se positionner sur un globe ?

Rayon - latitude - longitude $\ll > (r, \theta, \phi)$

Comment se positionner sur un globe ? Rayon - latitude - longitude <=> (r, θ, φ)



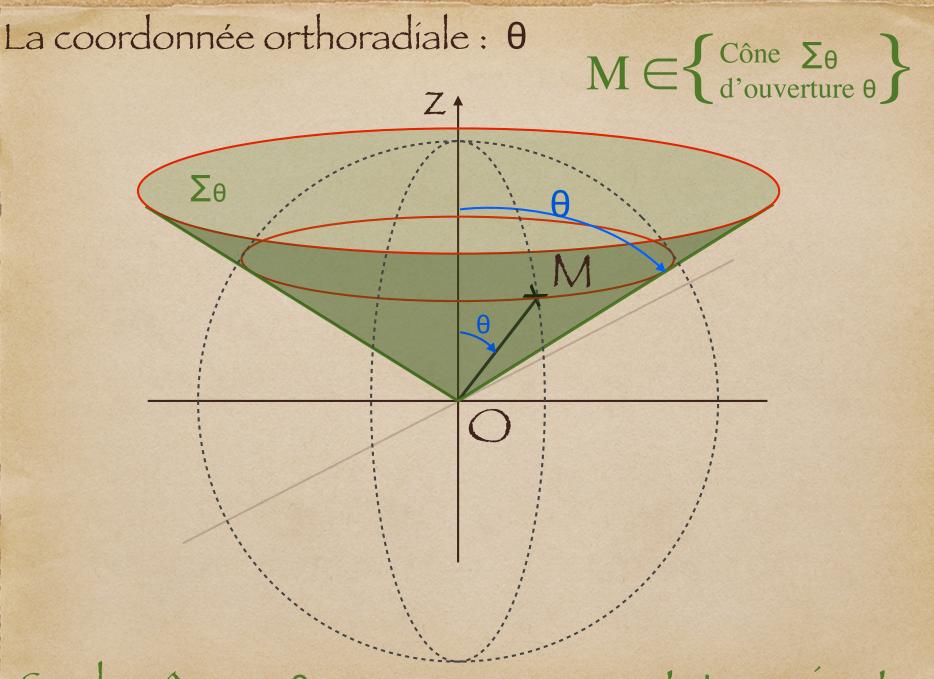
1 - Construction des coordonnées sphériques

On se donne trois axes orthogonaux deux à deux et fixes dans Ro

M

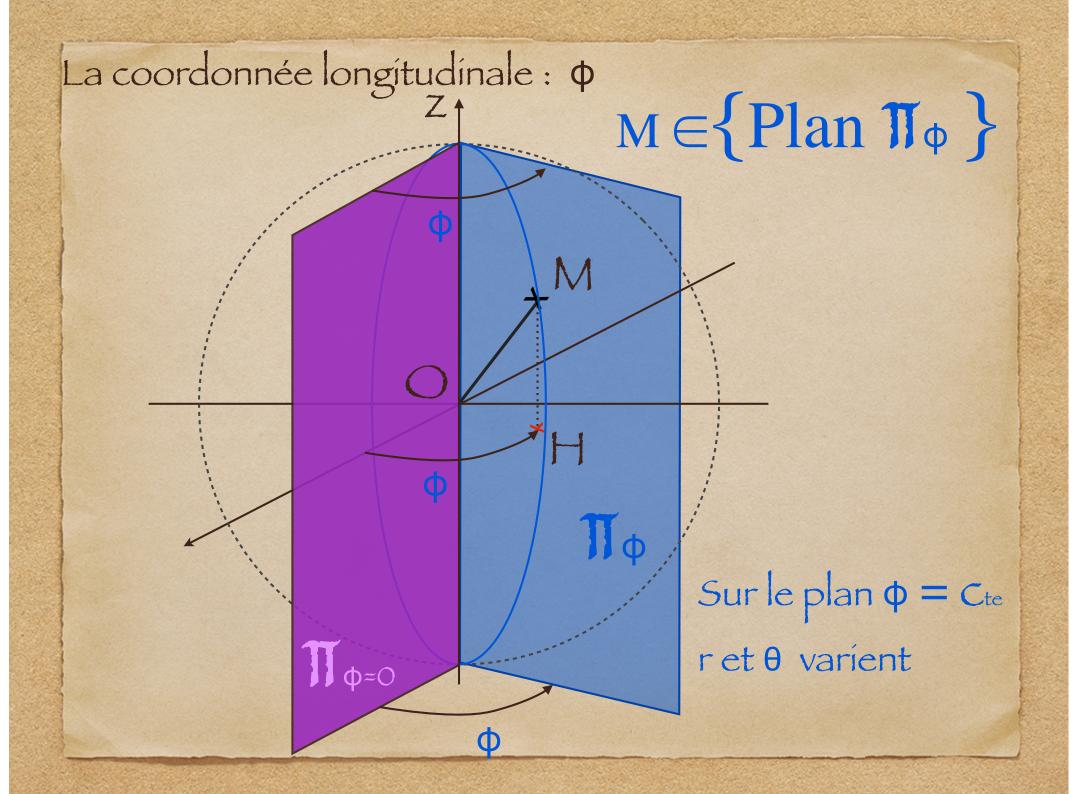
La coordonnée radiale : r $M \in \left\{ \begin{array}{l} \text{Sphère } \Sigma_r \\ \text{de rayon r} \end{array} \right\}$

Sur la sphère : $r = c_{te}$ θ et ϕ varient

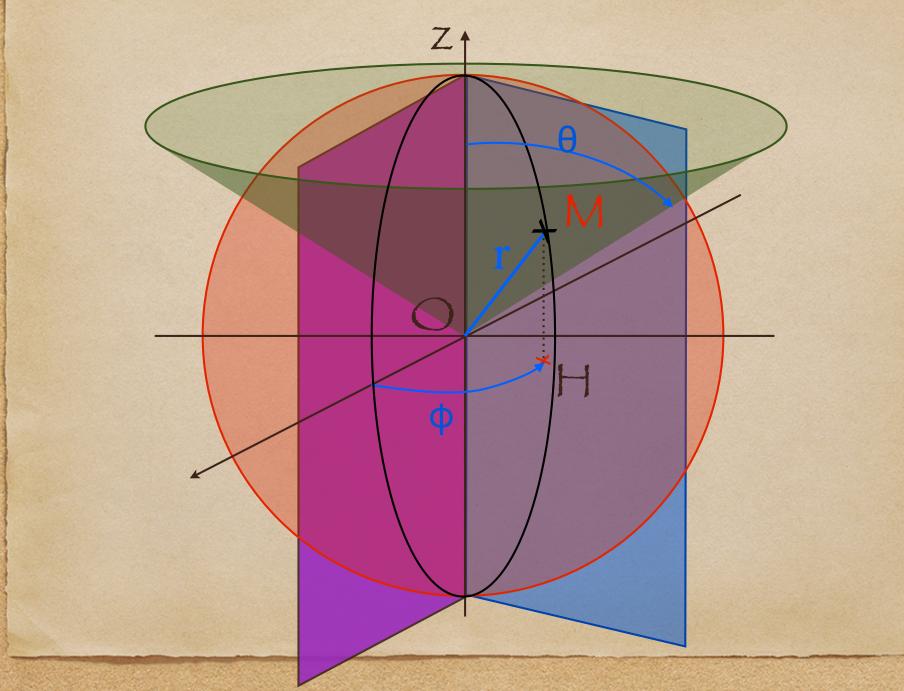


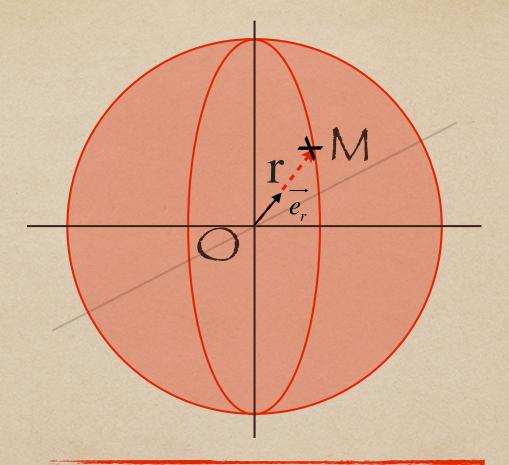
Sur le cône : $\theta = C_{te}$

ret p varient



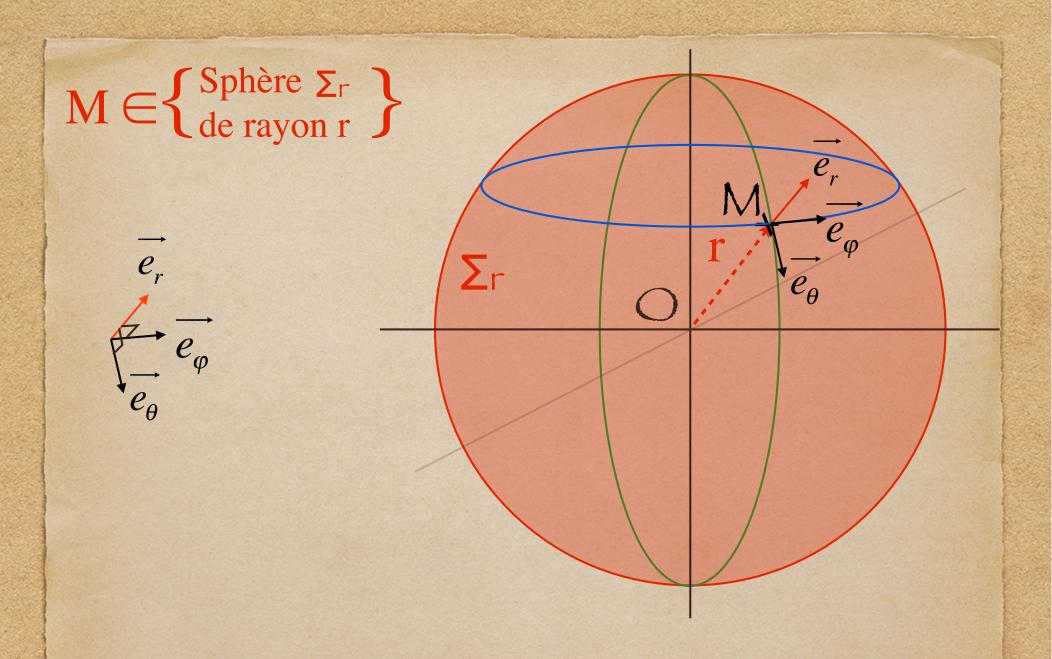
M est à l'intersection de ces trois surfaces :



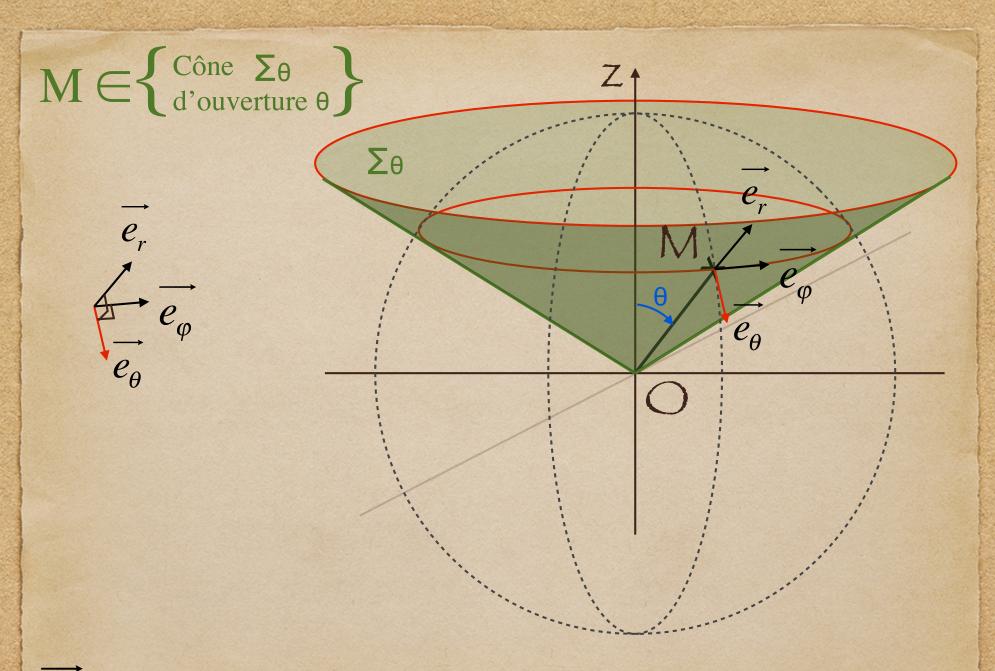


$$\overrightarrow{OM} = r\overrightarrow{e_r}(\theta, \varphi)$$

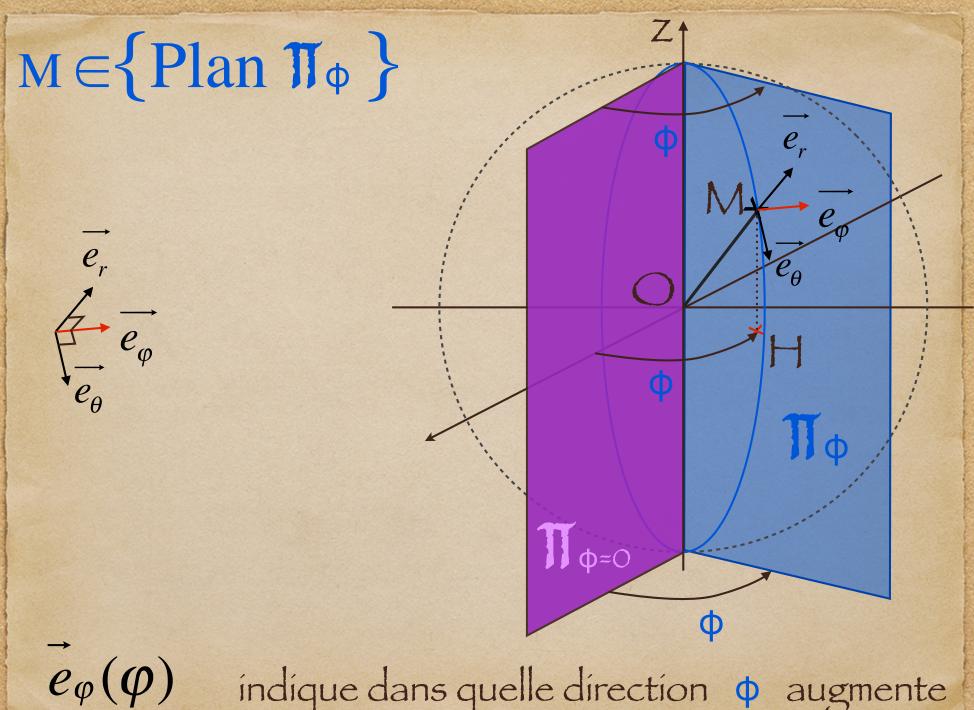
Le vecteur position dépend bien des trois coordonnées



 $\overline{e_r}(heta, oldsymbol{\phi})$ indique dans quelle direction r augmente



 $e_{ heta}(heta, oldsymbol{arphi})$ indique dans quelle direction heta augmente



indique dans quelle direction p augmente

3 - Vitesses et accélération

Soit Ro le référentiel d'étude, on définit :

On définit la vitesse du point M dans RO:

$$\overrightarrow{V_{R_0}}(M) \equiv \frac{d\overrightarrow{OM}}{dt}\Big|_{R_0}$$

et son accélération :

$$\overrightarrow{a_{R_0}}(M) \equiv \frac{d\overrightarrow{V_{R_0}}}{dt} \bigg|_{R_0} = \frac{d^2 \overrightarrow{OM}}{dt^2} \bigg|_{R_0}$$

a - Coordonnées cartésiennes

$$\overrightarrow{OM}(t) = x\overrightarrow{e_x} + y\overrightarrow{e_y} + z\overrightarrow{e_z}$$

$$\frac{d\overrightarrow{OM}}{dt} =$$

Notation:

$$\frac{dx}{dt} \equiv \dot{x}(t)$$

Soit

$$|\overrightarrow{V}_{R_0}(M)| \equiv \frac{d\overrightarrow{OM}}{dt}|_{R_0} = \begin{vmatrix} \dot{x}(t) \\ \dot{y}(t) \\ \dot{z}(t) \end{vmatrix}$$

 $(m \cdot s^{-1})$

On obtient l'accélération en dérivant la vitesse par rapport au temps :

$$\frac{d^2\overrightarrow{OM}}{dt^2} =$$

$$(m \cdot s^{-2})$$

Notation:

$$\frac{d^2x}{dt^2} \equiv \ddot{x}(t)$$

Soit

$$\left| \overrightarrow{a_{R_0}}(M) = \frac{d^2 \overrightarrow{OM}}{dt^2} \right|_{R_0} = \begin{vmatrix} \ddot{x}(t) \\ \ddot{y}(t) \\ \ddot{z}(t) \end{vmatrix}$$

β - Coordonnées cylindriques

$$\overrightarrow{OM}(t) = r\overrightarrow{e_r} + z\overrightarrow{e_z}$$

$$\frac{d\overrightarrow{OM}}{dt} =$$

On a donc:

$$(m \cdot s^{-1})$$

$$\downarrow$$

$$\frac{d\overrightarrow{OM}}{dt}(t) = r\overrightarrow{e_r} + r\dot{\theta}\overrightarrow{e_\theta} + \dot{z}\overrightarrow{e_z}$$

Soit dans la base $(\overrightarrow{e_r}, \overrightarrow{e_\theta}, \overrightarrow{e_z})_M$:

$$|\overrightarrow{V_{R_0}}(M)| \equiv \frac{d\overrightarrow{OM}}{dt} \Big|_{R_0} = \begin{vmatrix} \dot{r}(t) \\ r\dot{\theta}(t) \\ \dot{z}(t) \end{vmatrix}_{(m \cdot s^{-1})}$$

On obtient à nouveau l'accélération en dérivant la vitesse par rapport au temps :

$$\overrightarrow{a_{R_0}}(M) \equiv \frac{d\overrightarrow{V_{R_0}}}{dt} \bigg|_{R_0} =$$

!!! Bien vérifier l'homogénéité des termes !!!

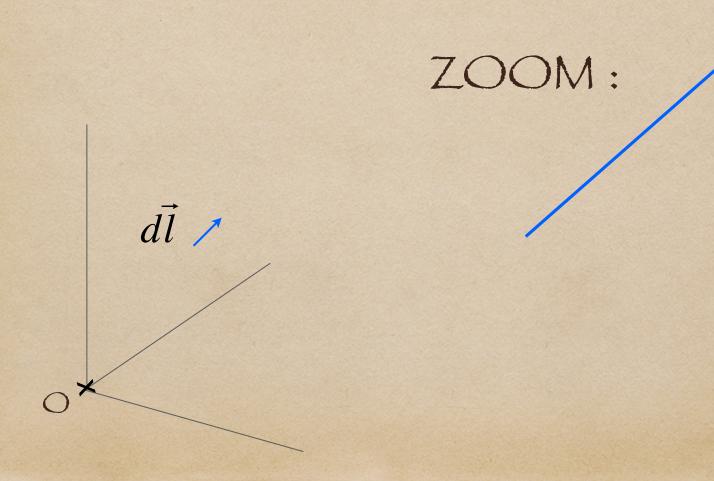
On obtient finalement:

$$\left| \overrightarrow{a_{R_0}}(M) \equiv \frac{d\overrightarrow{V_{R_0}}}{dt} \right|_{R_0} = \begin{vmatrix} \ddot{r} - r\dot{\theta}^2 \\ 2\dot{r}\dot{\theta} + r\ddot{\theta} \\ \ddot{z} \end{vmatrix}$$
 $(m \cdot s^{-2})$

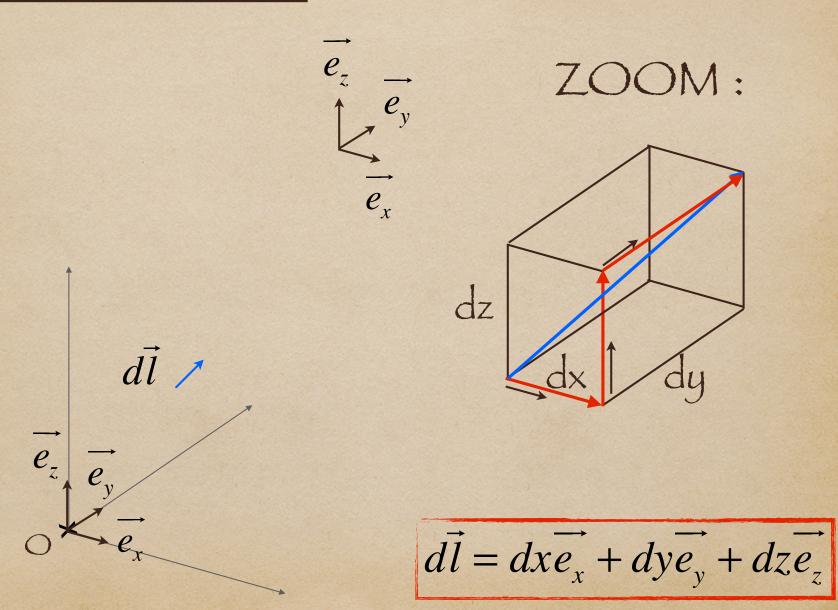
$$(m \cdot s^{-2})$$

© γ - Déplacements élémentaires

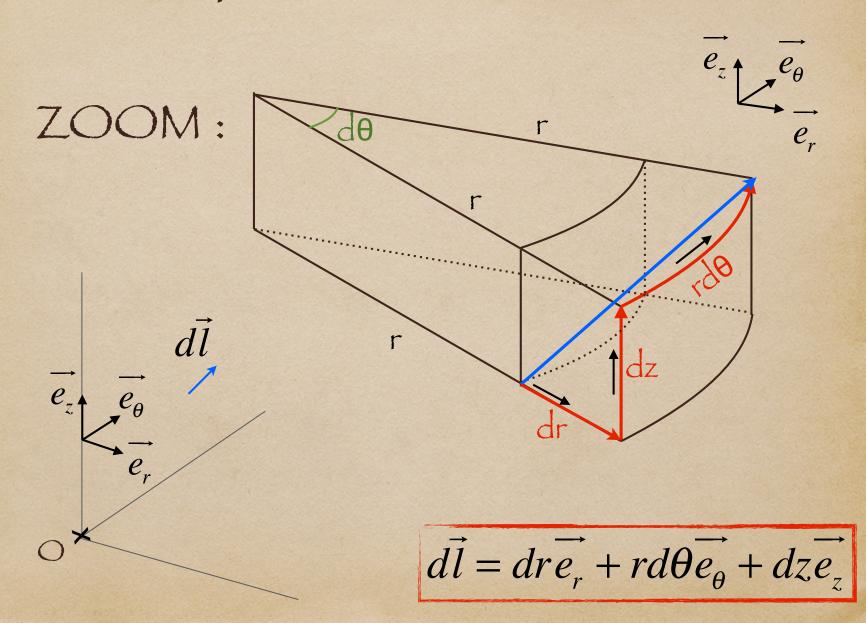
Soit di un vecteur de déplacement infinitésimal:



En cartésienne:



En cylindrique:



En sphérique: $r.sin(\theta)$ dφ $r.sin(\theta)d\phi$

$$\overrightarrow{dl} = dr\overrightarrow{e_r} + rd\theta \overrightarrow{e_\theta} + r\sin(\theta)d\varphi \overrightarrow{e_\varphi}$$

Interprétation géométrique de la vitesse

Cartésienne

$$\vec{V} = \frac{d\vec{l}}{dt}$$

cylindrique

$$d\vec{l} = dx\vec{e_x} + dy\vec{e_y} + dz\vec{e_z}$$

$$d\vec{l} = dr\vec{e_r} + rd\theta\vec{e_\theta} + dz\vec{e_z}$$

$$\vec{V} = \frac{dx}{dt} \vec{e_x} + \frac{dy}{dt} \vec{e_y} + \frac{dz}{dt} \vec{e_z}$$

$$\vec{V} = \frac{dr}{dt} \vec{e_r} + r \frac{d\theta}{dt} \vec{e_\theta} + \frac{dz}{dt} \vec{e_z}$$

$$\vec{V} \equiv \frac{d\vec{OM}}{dt} \bigg|_{R_0} = \begin{vmatrix} \dot{x}(t) \\ \dot{y}(t) \\ \dot{z}(t) \end{vmatrix}$$

$$\left| \overrightarrow{V} = \frac{d\overrightarrow{OM}}{dt} \right|_{R_0} = \left| \begin{array}{c} \dot{r}(t) \\ r\dot{\theta}(t) \\ \dot{z}(t) \end{array} \right|$$